Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

catena-Poly[bis[(η^2 -1-allyl-3-aminopyridinium)copper(I)]-di- μ -chlorocopper(I)-di- μ -chlorocopper(I)-di- μ -chloro]

Evgeny Goreshnik, a* Dieter Schollmeyer and Marian Mys'kiv^c

^aGZG, Department of Crystallography, University of Göttingen, Goldschmidt Straße 1, 37077 Göttingen, Germany, ^bInstitute of Organic Chemistry, Johannes Gutenberg University, Duesbergerweg 10-14, 55099 Mainz, Germany, and ^cDepartment of Inorganic Chemistry, Ivan Franko National University of L'viv, Kyryla and Mefodia Str. 8, 79005 L'viv, Ukraine Correspondence e-mail: yhoryes@gwdg.de

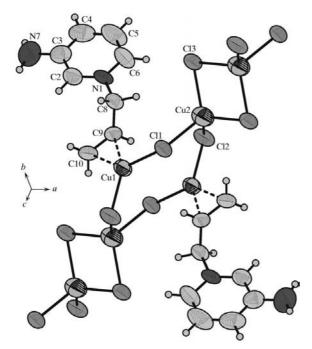
Received 6 October 2004 Accepted 10 January 2005 Online 12 February 2005

Crystals of the title π -complex, $[Cu_4Cl_6(C_8H_{11}N_2)_2]_n$, were obtained by means of alternating-current electrochemical synthesis. The structure consists of infinite copper–chlorine chains to which 1-allyl-3-aminopyridinium moieties are attached via a η^2 Cu-(C=C) interaction. The two independent Cu atoms have distinct coordination environments. One is three-coordinate, surrounded by two chloro ligands and the olefinic bond, whereas the second copper center is surrounded by a tetrahedral arrangement of four Cl atoms. The lower basicity of 3-aminopyridine as compared with 2- and 4-aminopyridine lowers the capacity of the organic ligand for donating to $N-H\cdots Cl$ hydrogen bonds and results in the formation of a large inorganic fragment.

Comment

 π -Complexes involving heterocyclic ligands have been investigated poorly. There have been only a few publications referring to copper(I) π -complexation with pyridine derivatives (for example, see Munakata et~al., 1987). The importance of metal complexes with heterocyclic ligands as compounds with potential biological activity (Ghiladi et~al., 2001; Rhames et~al., 2001) has led us to pursue a structural investigation of copper(I) π -complexes with 1-allyl-4-aminopyridinium (Goreshnik et~al., 2003et~al.) and 1-allyl-2-aminopyridinium (Goreshnik et~al., 2003et~al.) cations. To complete the comparison of structural peculiarities of complexes with isomeric et~al.0, with the 1-allyl-3-aminopyridinium cation has been prepared and structurally investigated.

The Cu and Cl atoms in (I) form infinite chains, propagating along [110]. These chains are composed of four- and eight-membered rings, each of which lies about an inversion center


with a common apex at atom Cu2 (Fig. 1). Both of the rings are centrosymmetric; the four-membered ring is essentially planar, while the eight-membered ring has a chair-like conformation. All Cl atoms act as bridges; atoms Cl1 and Cl2 connect pairs of Cu1 and Cu2 atoms in the eight-membered rings, whereas atom Cl3 bridges two Cu2 atoms in the four-membered ring. Atom Cu2 is tetrahedrally surrounded by four Cl atoms, whereas the trigonal-planar arrangement about atom Cu1 includes two Cl atoms and the olefinic bond of the allyl group of the 1-allyl-3-aminopyridinium ligand (Table 1). Because the coordination number is lower for atom Cu1 than for atom Cu2, the Cu1—Cl distances [2.2478 (14) and 2.2568 (14) Å] are noticeably shorter than the Cu2—Cl distances [2.3477 (15)–2.4167 (15) Å].

$$H_2N$$
 H_2
 Cl
 Cl
 CH_2
 Cl
 CH_2
 Cl
 Cl
 CH_2
 Cl
 Cl
 Cl
 Cl
 CH_2

For a numerical characterization of the effectiveness of the copper(I)-olefin interaction, the C-Cu-C angle provides the most suitable parameter, being dependent on both the C=C bond elongation and the Cu-(C=C) distance shortening. The Cu^{I} – (C=C) bond consists of two components. The $Cu^I \leftarrow L \sigma$ donor-acceptor component – which is relatively insensitive to the olefinic bond orientation - is formed by the overlap of the occupied olefinic $p\pi$ orbital and the unoccupied 4s⁰ orbital of the Cu^I atom, and produces a shortening of the Cu-m distance (m is the mid-point of the C=C bond). The $Cu^I \rightarrow L$ π -dative component, based on electron transfer from the Cu^I 3d¹⁰ orbitals to the unoccupied antibonding orbital of the C=C group, which is strongly dependent on a proper olefinic group orientation in the metal coordination sphere, causes a lengthening of the C=C bond. Therefore, both components increase the value of the C-Cu-C angle. Thus, shortening of the Cu-m distance and lengthening of the C=C bond, as well as an increase in the C-Cu-C angle, are the most informative values for estimating the effectiveness of the Cu-(C=C) interaction. An effective Cu-(C=C) interaction leads to a transformation of the copper coordination polyhedron from tetrahedral to trigonal-pyramidal, with the olefinic group in the basal plane and with concomitant lengthening of the central atom-axial ligand distance; this lengthening can proceed as far as the removal of the axial ligand from the metal coordination sphere, with the formation, as in the present structure, of a trigonal-planar copper environment.

metal-organic compounds

The coordinated olefinic group, with a C=C distance of 1.344 (7) Å, is only slightly elongated compared with the length of an uncoordinated C=C bond. This value, together with the C-Cu-C angle of 38.2 (2)° and a noteworthy 0.21 Å deviation of the olefinic C atoms from the C11/C12/m plane (corresponding to an 18° inclination of the C=C bond from the equatorial plane), reveal the low efficiency of the π interaction – that is, despite a rather effective σ -component [short Cu-m distance of 1.943 (6) Å], the π -dative component of the Cu-(C=C) interaction is less pronounced. Comparison of these values with the analogues in the structure of the copper(I) chloride π -complex with 1-allyl-4-aminopyridinium, where the Cu atom also possesses a trigonalplanar 2Cl + C=C environment [C-Cu-C = $38.0 (2)^{\circ}$, Cum = 1.950 (6) Å and C=C = 1.343 (6) Å], shows a similarly modest π interaction in both cases. The Cu-m distances are rather short for copper(I) π -complexes in general because of the absence of steric hindrance in the trigonal-planar metal environment, which includes two Cl atoms in addition to the C=C bond. The Cu1-C10(terminal) distance is, as usual, slightly shorter than the Cu1-C9 distance. All pyridine rings are strictly parallel to each other, but the shortest ring-ring distance (4.5 Å) indicates an absence of any aromatic π - π stacking. Infinite chains, formed by the CuLCl₂ and CuCl₄ subunits, are interconnected into a three-dimensional structure by weak $N-H\cdots Cl$ hydrogen bonds (Table 2 and Fig. 2). The H···Cl distances (2.75 and 2.83 Å) differ significantly from the values of 2.39–2.57 Å observed for the copper(I) chloride π -complex with 1-allyl-4-aminopyridinium and 2.47– 2.50 Å for the 1-allyl-2-aminopyridinium derivative. These π -complexes with N-allyl derivatives of aminopyridines, viz. $(2-H_2N-C_5H_4NC_3H_5)_2[Cu_2Cl_4]$ and $(4-H_2N-C_5H_4NC_3H_5)_2[Cu_2Cl_4]$

Figure 1Copper–chlorine chains and ligands in the structure of (I).

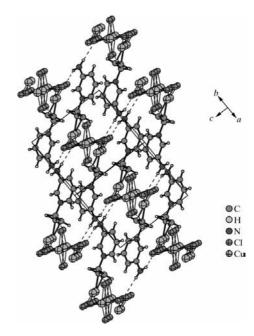


Figure 2
Hydrogen bonding in the structure of (I).

[CuCl₂], possess structures with small inorganic fragments, Cu₂Cl₄ and CuCl₂, respectively, and rather strong N-H···Cl hydrogen bonds. We note that the progression from the simplest metal-containing fragment, CuCl₂⁻, in the complex with 1-allyl-4-aminopyridinium, through Cu₂Cl₄²⁻ in the complex with 1-allyl-2-aminopyridinium, to the complicated fragment $(Cu_4Cl_6)_n$ in (I) with 1-allyl-3-aminopyridinium corresponds to decreasing order of pK_a (base) values of the initial aminopyridines (9.25, 6.86 and 6.07, respectively). Thus, in (I), the electron-donor ability of the N atom of the NH₂ group is weaker, which may be responsible for the elongated N−H···Cl contacts here as compared with the 2-amino- and 4-aminopyridinium analogues. Moreover, a 'chelating' ligand arrangement [a 1-allyl-2-aminopyridinium cation bonded to the same $Cu_2Cl_4^{2-}$ dimer *via* a Cu-(C=C) interaction and by N-H···Cl contacts] or a 'bridging' organization (a 1-allyl-4aminopyridinium moiety connected to one of the Cu atoms through the C=C bond and to a chloro ligand of an adjacent metal atom through N-H···Cl hydrogen bonds) also promotes the formation of effective hydrogen bonds. In such cases, the H atom effectively completes the coordination about the Cl atom, hindering a bridging function for the halogen and thus effectively impeding the further association of small inorganic fragments into larger ones. In the case of (I), the weakly hydrogen-bonding amine H atoms cannot compete with the Cu atoms for a place in the chlorine environment, which in turn enables the formation of the infinite copperchlorine chains.

Experimental

1-Allyl-3-aminopyridinium chloride was prepared from 3-aminopyridine (Aldrich) by a procedure similar to that used for obtaining 1-allyl-4-aminopyridinium chloride (Goreshnik *et al.*, 2003*a*). Good

quality crystals of the title compound were obtained using the alternating-current electrochemical technique (Mykhalichko & Mys'kiv, 1998) starting from 1-allyl-3-aminopyridinium chloride and copper(II) chloride. To an ethanol solution (2 ml) of CuCl₂·2H₂O (1 mmol) was added an ethanol solution (2 ml) of 1-allyl-3-aminopyridinium chloride (1.2 mmol). The solution was placed in a small test tube and copper-wire electrodes in cork were inserted. After applying a 0.30 V alternating current (frequency 50 Hz) for some days, colorless crystals of the title compound appeared on the copper electrodes.

Crystal data

$[Cu_4Cl_6(C_8H_{11}N_2)_2]$	$D_m = 2.000 \text{ Mg m}^{-3}$
$M_r = 737.24$	D_m measured by flotation in
Triclinic, $P\overline{1}$	chloroform-bromofrom
a = 8.4148 (12) Å	Cu $K\alpha$ radiation
b = 8.7310 (16) Å	Cell parameters from 25 reflections
c = 9.8916 (16) Å	$\theta = 35-45^{\circ}$
$\alpha = 102.177 (16)^{\circ}$	$\mu = 10.14 \text{ mm}^{-1}$
$\beta = 104.587 \ (12)^{\circ}$	T = 295 (2) K
$\gamma = 113.166 \ (13)^{\circ}$	Plate, colorless
$V = 606.1 (2) \text{ Å}^3$	$0.24 \times 0.20 \times 0.04 \text{ mm}$
Z = 1	
$D_r = 2.020 \text{ Mg m}^{-3}$	

Data collection

Enraf-Nonius CAD-4	$R_{\rm int} = 0.106$
diffractometer	$\theta_{ m max} = 73.4^{\circ}$
$\theta/2\omega$ scans	$h = -10 \rightarrow 0$
Absorption correction: numerical	$k = -9 \rightarrow 10$
(de Meulenaer & Tompa, 1965)	$l = -11 \rightarrow 12$
$T_{\min} = 0.190, T_{\max} = 0.696$	3 standard reflections
2615 measured reflections	frequency: 60 min
2443 independent reflections	intensity decay: 5%
2004 reflections with $I > 2\sigma(I)$	

Table 1 Selected geometric parameters (Å, °).

Cu1-C10	2.048 (5)	Cu2-Cl3 ⁱⁱ	2.3922 (16)
Cu1-C9	2.064 (4)	Cu2-Cl1	2.4167 (15)
Cu1-Cl1	2.2478 (14)	N1-C8	1.492 (5)
$Cu1-Cl2^{i}$	2.2568 (14)	C8-C9	1.501 (6)
Cu2-Cl3	2.3477 (15)	C9-C10	1.344 (7)
Cu2-Cl2	2.3841 (18)		` '
C10-Cu1-C9	38.15 (19)	Cl2-Cu2-Cl1	103.51 (5)
Cl1-Cu1-Cl2 ⁱ	108.12 (5)	Cl3 ⁱⁱ —Cu2—Cl1	104.32 (5)
Cl3-Cu2-Cl2	110.82 (6)	C2-N1-C8	118.4 (4)
Cl3-Cu2-Cl3 ⁱⁱ	103.01 (5)	C6-N1-C8	119.6 (4)
Cl2-Cu2-Cl3 ⁱⁱ	119.73 (6)	N1-C8-C9	109.9 (4)
Cl3-Cu2-Cl1	115.89 (6)	C10-C9-C8	122.8 (4)
C2-N1-C8-C9	71.2 (6)	Cl1-Cu1-C9-C10	-160.6 (3)
C6-N1-C8-C9	-107.3 (5)	Cl2 ⁱ -Cu1-C9-C10	21.4 (4)
N1-C8-C9-C10	-93.3 (5)	012 041 07 010	21.1 (1)

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 2, -y + 1, -z + 1.

Table 2 Hydrogen-bond geometry (Å, °).

$D-H\cdot\cdot\cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D $ H$ \cdots A
$N7-H7A\cdots Cl1^{iii}$	0.83	2.83	3.618 (5)	158
$N7-H7B\cdots Cl2^{iv}$	0.93	2.75	3.629 (6)	160

Symmetry codes: (iii) x - 1, y, z - 1; (iv) x - 1, y, z.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1252P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.060$	+ 0.1886P]
$wR(F^2) = 0.175$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2443 reflections	$\Delta \rho_{\rm max} = 1.28 \text{ e Å}^{-3}$
136 parameters	$\Delta \rho_{\min} = -0.95 \text{ e Å}^{-3}$
H-atom parameters constrained	

The highest difference peak is located 0.92 Å from atom Cu1. All H atoms were allowed to ride on their parent atoms [C-H = 0.93 and 0.97 Å, and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C,N})$].

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *CORINC* (Dräger & Gattow, 1971); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Bergerhoff, 1996); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA1102). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. J. (1994). *J. Appl. Cryst.* 27, 435.

Bergerhoff, G. (1996). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Dräger, M. & Gattow, G. (1971). *Acta Chem. Scand.* **25**, 761–762. [Revised version by L. Wiehl & D. Schollmeyer (1994). University of Mainz, Germany.]

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Ghiladi, R. A., Hatwell, K. R., Karlin, K. D., Huang, H.-W., Moënne-Loccoz, P., Krebs, C., Marzilli, L. A., Cotter, R. J., Kaderli, S. & Zuberbühler, A. D. (2001). J. Am. Chem. Soc. 123, 6183–6184.

Goreshnik, E. A., Schollmeyer, D. & Mys'kiv, M. G. (2003a). Z. Anorg. Allg. Chem. 629, 2040–2045.

Goreshnik, E. A., Schollmeyer, D. & Mys'kiv, M. G. (2003b). Acta Cryst. C59, m478–m481.

Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.

Munakata, M., Kitagawa, S., Simono, H., Emory, T. & Masuda, H. (1987). J. Chem. Soc. Chem. Commun. pp. 1798–1799.

Mykhalichko, B. M. & Mys'kiv, M. G. (1998). Ukraine Patent UA 25450A, Bull. Issue No. 6.

Rhames, F. C., Blackburn, N. J., Murthy, N. N. & Karlin, K. D. (2001). J. Biol. Inorg. Chem. 6, 567–577.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.